ПОСТПТИМИЗАЦИОННЫЙ  АНАЛИЗ

Ценовой анализ

Изменение оптимального плана может быть связано с изменением цен на продукцию (коэффициентов при переменных в целевой функции). В рассматриваемой модели цены считаются неизменными. При небольших изменениях цен оптимальный план обычно сохраняет свою оптимальность. При существенных изменениях цен оптимальным становится другой план. Важно разобраться в этом, рассчитать критические ценовые границы. Такое изучение воздействия ценовых изменений на оптимальный план и оптимум относят к ценовому постоптимизационному анализу.

 Обратимся к нашему примеру. Цена Печенья составляет 32 руб. за кг. Предположим, что отпускная цена изменилась, и теперь Печенье продается по другой цене. Следует ожидать, что при этом изменится выручка от продаж. Однако изменится ли оптимальный план?

Небольшое изменение этой цены приведет к незначительному повороту градиента (вместе со всей системой перпендикулярных ему линий уровня целевой функции). В результате оптимальный план останется в прежней точке (Рис.  2.6 ). При более значительном изменении цены он перейдет в другую вершину области допустимых планов.

 Рассмотрим этот вопрос подробнее. Предположим, что цена Печенья увеличивается. Это соответствует повороту градиента по часовой стрелке. вместе с ним поворачивается и перпендикулярная ему линия уровня (пунктирная линия на Рис.  2.6 ). При небольшом повороте оптимальный план остается в первоначальной точке L. При достаточно большом повороте оптимальный план перейдет в точку M, находящуюся на пересечении границ по Муке и Маслу (линий A1A2 и B1B2).

Критическая величина цены, при которой происходит переход оптимального плана из одной точки в другую, соответствует положению, когда линия уровня целевой функции параллельна прямой А1А2 (а градиент, соответственно, перпендикулярен этой прямой). Условием параллельности прямых является пропорциональность коэффициентов при переменных в двух уравнениях: линии уровня целевой функции и границы по Муке. Составим пропорцию с неизвестной ценой c1 первого продукта (Печенья)

.

Отсюда получаем c1= 45. Таким образом, при увеличении цены Печенья с первоначальных 32 до 45 руб. за кг (и при сохранении цены Бисквитов) оптимальный план остается неизменным, по-прежнему следует производить 1250 кг Печенья и 666,667 кг

Бисквитов. Если же цена поднимется выше 45 руб., то оптимальным планом станет точка M, находящаяся на пересечении границ по Муке и Маслу (линий A1A2 и B1B2). Ее координаты можно определить решением системы уравнений:

откуда x1 = 1575,       x2 = 125.

При цене Печенья, в точности равной 45 руб., оптимальным является как первоначальный план L, так и новый план M, а также и все точки, лежащие на отрезке LM. В этом случае задача имеет бесконечно много оптимальных планов. Разумеется, все эти разные планы производства обеспечивают в точности одну и ту же величину выручки от продаж.

Так, план L соответствует выручке

45´1250 + 27´666,667 = 74250 (руб.).

План M соответствует той же величине выручки

45´1575 + 27´125 = 74250 (руб.).

Верхняя критическая граница цены Печенья равна 45. Отсюда следует, что допустимое увеличение первоначальной цены равно 13.

  Аналогичным образом рассчитывается нижняя граница цены первого продукта. При уменьшении цены Печенья градиент вместе с линиями уровня будет поворачиваться против часовой стрелки. При достаточно сильном повороте оптимальный план перейдет в точку K с координатами

x1 = 818,182,              x2 = 954,545.

Критическое положение определяется из условия параллельности линии уровня целевой функции и линии Сахара D1D2. Составим пропорцию:

,

решив которую получим c1 = 18.

Мы получили нижнюю критическую границу цены Печенья, равную 18 руб. Допустимое уменьшение первоначальной цены Печенья, равной 32 руб., составляет 14 руб.

Таким образом, при произвольных изменениях цены Печенья между нижней и верхней критическими границами, то есть между 18 и 45 руб., оптимальный план остается прежним: по-прежнему следует производить 1250 кг Печенья и 666,667 кг Бисквитов. При выходе цены за верхнюю или нижнюю критические границы оптимальный план изменится, вместе с ним изменится и статус ресурсов.

 Аналогичным образом вычисляются нижняя и верхняя границы по второму продукту – Бисквитам. Отметим, что изменение цены по разным продуктам по-разному воздействует на направление поворота градиента. При увеличении цены второго продукта градиент поворачивается против часовой стрелки, а при уменьшении – по часовой стрелке.

Расчеты показывают, что верхняя критическая граница цены Бисквитов равна 48 руб., так что допустимое увеличение составляет 21 руб. При преодолении этой границы оптимальный план переходит из точки L в точку K.

Нижняя критическая граница цены Бисквитов равна 19,20 руб., допустимое уменьшение составляет 7,80 руб. При переходе через эту границу оптимальный план переходит из точки L в точку M.

Критические границы цен соответствуют границам устойчивости оптимального плана при изменении коэффициентов целевой функции.

         

Hosted by uCoz