МОДЕЛИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Варианты задачи оптимального распределения ресурсов

Мы рассмотрели общий, но простой вид задачи оптимального распределения ресурсов. Возможны и другие виды, учитывающие специфические особенности моделируемой ситуации. И в этих случаях математическая модель строится аналогичным путем.

Верхняя и нижняя граница плана

Спрос на те или иные виды продукции может быть ограничен. Предприятие по своим производственным возможностям, по ресурсам может выпустить больше продукции, чем сможет потом реализовать. Модель оптимального распределения ресурсов в этих новых условиях получается из предыдущей модели с помощью простой модификации. А именно, пусть объем реализации j-го вида продукции ограничен величиной dj. Тогда к системе ограничений следует дописать неравенства, ограничивающие объемы производства сверху:

xj £ dj.

Новая модель, включающая эти новые неравенства будет учитывать ограниченность объемов реализации продукции.

Например, недельный спрос на каждый вид продукции фирмы «Сфера» (Печенье и Бисквиты) ограничен величиной 3000 кг. К уже построенной математической модели следует добавить два неравенства:

x1 £ 3000,       x2 £ 3000,

как это и было сделано выше.

Рассмотрим ограничения противоположного смысла. Предположим, что по всем или по некоторым видам продукции предприятие имеет договора на поставку с потребителями этой продукции. В соответствии с этими договорами предприятие должно выпустить продукцию в объеме, не меньшем заданного. Пусть продукцию j-го вида предприятие должно изготовить в объеме, не меньшем заданной величины dj¢. Тогда к системе ограничений следует дописать неравенства, ограничивающие объемы производства снизу:

xj ³ dj¢.

Разумеется, спрос может быть ограничен одновременно и сверху, и снизу. В этом случае к модели следует добавить все соответствующие ограничения.

Комплектность выпуска

Рассмотрим теперь ситуацию, когда вся выпускаемая продукция или ее часть реализуется комплектами. Предположим, что в комплект входит kj единиц продукции j-го вида (если какая-то продукция в комплект не входит, то соответствующее kj равно 0). Пусть цена комплекта равна h. Построим модель для определения оптимального производственного плана в этих условиях.

Обозначим посредством q планируемое (пока еще неизвестное) число комплектов. Новая модель получается из исходной общей модели с помощью простой модификации. В целевую функцию следует ввести доход от продажи комплектов в сумме с доходом от некомплектных продаж произведенной продукции. К прежней системе ограничений следует добавить условия, обеспечивающие то, что комплекты составляются из произведенной продукции. В результате получим:

Изменение ресурсной обеспеченности

Рассмотрим еще одну важную модификацию. Предположим, что предприятие может пополнять объемы ресурсов, неся связанные с этим затраты, но и расширяя свои производственные возможности. Пусть i-й ресурс можно приобрести по цене pi за единицу. Следует определить оптимальные объемы производства в условиях, когда помимо уже имеющихся объемов ресурсов bi предприятие может использовать дополнительные, пока еще неизвестные объемы этих ресурсов.

Таким образом, следует рассчитать не только объемы производимой продукции, но и объемы приобретаемых ресурсов, которые будут вовлечены в производственный процесс. Обозначим эту неизвестную пока величину дополнительного объема i-го ресурса посредством ui.

Для того, чтобы учесть затраты на приобретение ресурсов, следует величину этих затрат, то есть произведение цены на объем приобретаемого ресурса, ввести в целевую функцию со знаком "минус" для каждого из приобретаемых ресурсов. Для того, чтобы учесть возможности использования такой продукции в производственном процессе, следует дополнить соответствующее ограничение, дополнив правые части ограничений новыми объемами ресурсов.

Модель в результате этих изменений примет следующий вид:

 Если предприятие производит некоторую продукцию исключительно для собственных нужд (полуфабрикат), то такую продукцию можно рассматривать как покупаемую предприятием у себя самого по нулевой цене, с соответствующими естественными изменениями в модели.

Динамическое планирование

Рассмотренные модели предназначаются для определения оптимального плана в одном промежутке времени. При составлении оптимальной последовательности планов, каждый из которых предназначен для реализации в своем периоде времени, поступают следующим образом. Для каждого промежутка формируют свою модель, а затем эти модели с помощью дополнительных ограничений связывают друг с другом.

Результаты деятельности предприятия (доходы, материальные запасы) в одних периодах времени влияют на условия деятельности в других, последующих периодах. Дополнительные ограничения, сцепляющие друг с другом модели разных периодов, как раз и выражают такие связи между результатами, полученными в одних периодах, и условиями деятельности в других.

 Мы рассмотрели основную, базовую модель оптимального использования ресурсов и различные ее модификации. Эти модификации могут объединяться и использоваться совместно. Разумеется, существуют и другие, не рассмотренные здесь условия и ситуации построения производственного плана. Они также могут быть промоделированы аналогичным образом.

Разнообразные другие дополнительные производственные условия без труда могут быть учтены в математической модели. Они приводят лишь к расширению модели, увеличению числа ограничений и переменных, но не приводят к ее качественному принципиальному изменению.

        

 

Hosted by uCoz