МЕТОДЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ 

Точечные и интервальные оценки.

Оценки неизвестных параметров бывают двух видов - ТОЧЕЧНЫЕ И ИНТЕРВАЛЬНЫЕ.
 ТОЧЕЧНАЯ ОЦЕНКА - оценка имеющая конкретное числовое значение. Например, среднее арифметическое:

    

X = (x1+x2+...+xn)/n,

     где: X - среднее арифметическое (точечная оценка МО);
     x1,x2,...xn - выборочные значения; n - объем выборки.
     ИНТЕРВАЛЬНАЯ ОЦЕНКА - оценка представляемая интервалом значений, внутри которого с задаваемой исследователем вероятностью находится истинное значение оцениваемого параметра. Интервал в интервальной оценке называется ДОВЕРИТЕЛЬНЫМ ИНТЕРВАЛОМ, задаваемая исследователем вероятность называется ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТЬЮ. В практике статистических вычислений применяются стандартные значения доверительной вероятности: 0,95, 0,98 и 0,99 (95%, 98% и 99% соответственно). Например, интервальная оценка МО (3,8) при доверительной вероятности 0,95. Это означает, что МО лежит в пределах от 3 до 8 с вероятностью 0,95, следовательно вероятность того, что МО меньше 3 или больше 8 не превышает 0,05.
     Очевидно, что чем выше доверительная вероятность, тем выше точность оценки, но шире доверительный интервал. Отсюда следует - ДЛЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ВЕРОЯТНОСТЬ ТОГО, ЧТО ТОЧЕЧНАЯ ОЦЕНКА (ширина доверительного интервала равна 0) СОВПАДЕТ С ЛЮБЫМ ЗАДАННЫМ ЗНАЧЕНИЕМ ИЛИ ОЦЕНИВАЕМЫМ ПАРАМЕТРОМ РАВНА 0.
    Таким образом, точечная оценка имеет смысл лишь тогда, когда приведена характеристика рассеяния этой оценки (дисперсия). В противном случае она может служить лишь в качестве исходных данных для построения интервальной оценки.

     Вычисление интервальной оценки рассмотрим на примере интервальной оценки МО для случайной величины подчиняющейся нормальному закону распределения. Границы доверительного интервала определятся по формулам:

Xmin = X - T(ν,P)*S/(n)1/2

 
Xmax = X + T(ν,P)*S/(n)1/2
 

где: Xmin, Xmax - нижняя и верхняя границы интервала;
    X - среднее арифметическое (точечная оценка МО);
    n - объем выборки;
    T(ν,P) - поправочный коэффициент, называемый T-статистика, величина которого определяется значением задаваемой доверительной вероятности p и числом степеней свободы ν (ν=n-1);

    S = [(x1 - X)2 + (x2 - X)2 + ... + (xn - X)2]1/2  - корень квадратный из оценки дисперсии случайной величины X

   ЧИСЛО СТЕПЕНЕЙ СВОБОДЫ СТАТИСТИКИ - число независимых случайных величин, по которым вычисляется данная статистика. Например, при вычислении среднего арифметического все случайные величины в выборке x1,x2,...,xn независят друг от друга. В оценке S из n отклонений вида (xi - X)2 независимы только n-1 (т.к. в формуле присутствует X, то по любому набору n-1 отклонений вычисляется n-ое).

Проверьте усвоение  Предыдущий раздел  Следующий раздел  Оглавление

Hosted by uCoz